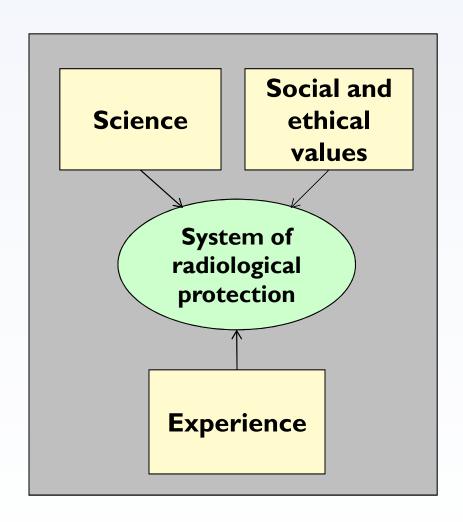
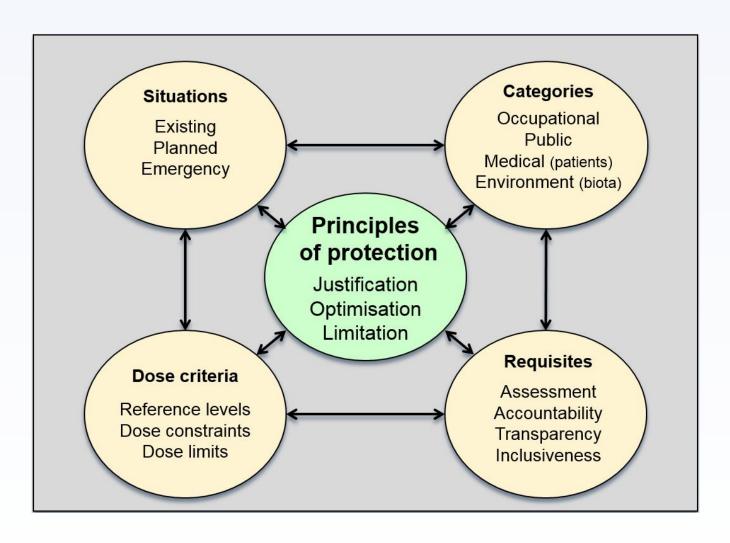
Understanding Existing Exposure Situations

Jean-Francois Lecomte
IRSN-France
Member of ICRP Committee 4


Third International ICRP Symposium
Seoul, Korea
20 October 2015

Setting the stage

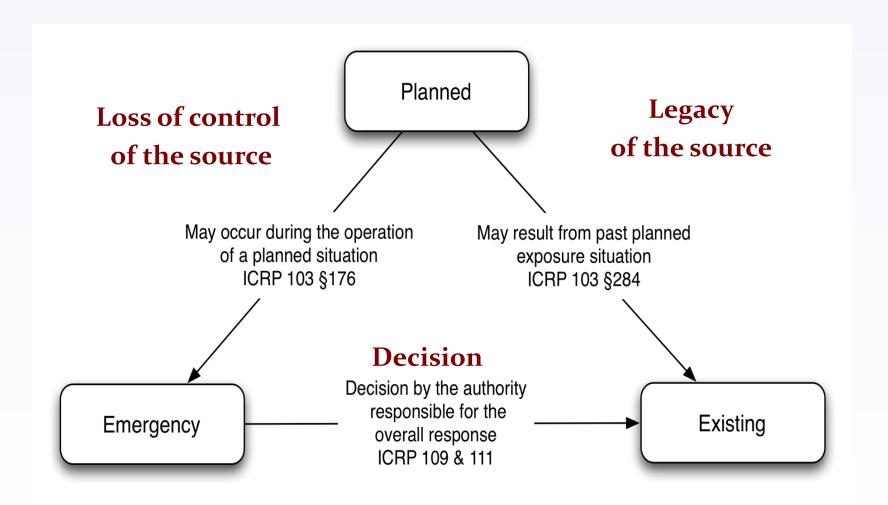
- System of RP developed gradually along 20th Century
- Until 2nd WW: focused on protection of medical staff
- After 2nd WW: focused on nuclear activities (ICRP 26, 60)
 - Protection of workers inside installations
 - Protection of public outside
- Change in 2007 to deal with other concerns (ICRP 103)
 - Accidents, malevolent events
 - Natural exposures
 - Legacy of the past
- Main changes from ICRP 60 to ICRP 103
 - Practices/Intervention → Existing/Planned/Emergency Expo Sit
 - 1 common way: constrained optimisation
 - Stakeholder involvement
 - Protection of the environment



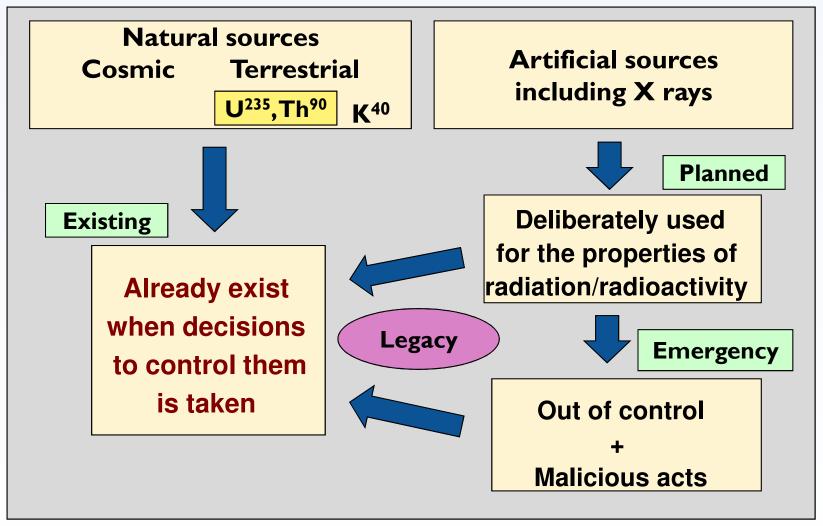
The 3 pillars of the RP system

The RP system in ICRP 103

Notion of Existing Exposure Situation


 An exposure situation (ES) is the process causing human exposures from natural and man-made sources

- Three types of ES: Existing, Planned and Emergency ES
- Existing ES: exposures resulting from sources that already exist when decisions to control them are taken.



Relationship between the exposure situations

Exposure situations

Examples of Existing ES

Natural sources

- Cosmic radiation
- Radon
- NORM
- ...

Man-made sources

- Contaminated sites (legacy of the past)
- Contaminated areas (post-accident situations)
- ...

Common features of Existing ES

- Exposures affect places of living and day to day activities
- Exposures need to be measured to characterize the situation
- Levels of exposure highly dependant of individual behaviours
- Generally a wide spread of the individual dose distribution
- No potential for accident
- Exposure can be controlled by individuals = self-help protection
- Many stakeholders are generally involved
- Lack of RP culture often present
- RP closely related to many factors (social, economic, political, ethical...) especially when controversial or sensitive situation

Exposure situations and time factor

- Existing ES: protective actions can be implemented only after the characterisation of the ES and it generally takes time to progressively reduce or maintain exposures ALARA
- Planned ES: protective actions can be implemented at any time and are effective immediately
- Emergency ES: protective actions must be implemented urgently and in a timely manner to be effective
- Whatever the ES: protective actions can be envisaged and prepared (planned) in advance

Categories of exposure

- Existing exposure situation can lead to public or occupational exposure, not medical exposure
- The definition of occupational exposure is a challenge
 - Many workers adventitiously exposed
 - Source not deliberately introduced and operated
 - Source not necessarily used for radioactive properties
 - Partial responsibility on source, pathway, exposures
 - No potential for high doses
 - Classification of areas may be difficult to determine clearly

Occupational and Environmental exposures in Existing ES

Key elements to deal with exposure at work

- General responsibility of employer to protect employees
- Management of the workplace rather than workers individually (like for other risks)
- Resulting level of exposure of workers
- Feature of the individual dose distribution

Environmental exposure

- See Committee 5 Publications (in particular ICRP 124)
- Need to be complemented

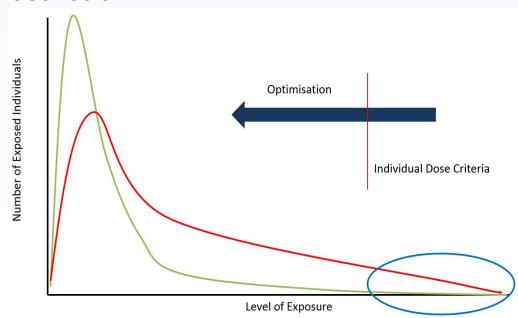
3 Principles of protection

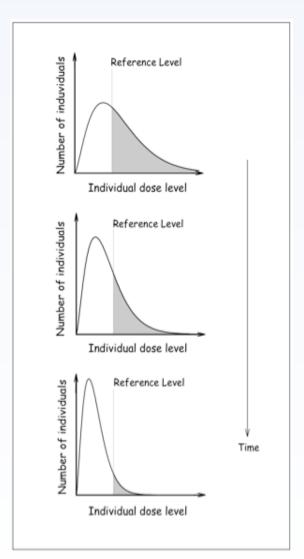
- Justification: do more good than harm
- Optimisation of protection: all exposures should be kept ALARA
 - Taking into account economic and societal factors
 - With restrictions on individual exposure to limit inequities in the dose distribution
- Application of dose limits: the total dose to any individual should not exceed the appropriate limits
- Only Justification and Optimisation apply to Existing ES

Application to Existing ES

Justification

- Focussed on actions to control of the situation
- Actions on the source (if possible), pathways (mainly), individuals (a few cases)
- Characterisation of the situation is a prerequisite (who is exposed, when, where, how + feature of individual dose distribution)


Optimisation of protection


- Key principle (very powerful to reduce doses in all ES)
- Associated with a dose criteria (restriction)
- Prevention: avoid unnecessary exposure
- Mitigation: reduce existing exposures ALARA

Optimisation process

- Implemented taking account prevailing circumstances
- Step by step process
- Move dose distribution towards lower levels
- Reduce (eliminate) individuals with dose > restriction

Existing ES versus Planned ES

- All parameters cannot be anticipated with same precision
- To be determined and framed on a case by case basis:
 - Status of the source
 - Classification of areas
 - Range of exposures
 - Distinction between public and occupational
- People including those responsible not always fully prepared and trained
- Need of a graded approach, more qualitative and less quantitative than in Planned ES
- Prudence and reasonableness need pragmatism

Stakeholders involvement

- A crucial point: take account of concerns and expectations
- Propose several options to stakeholders within dialogue before selecting the best one
- When exposure affect day to day life, involvement helps to:
 - Increase understanding
 - Maintain vigilance
 - Promote autonomy and accountability
- In some situations:
 - Self-help protective actions, with support
 - Co-expertise (support from RP professionals) beside actions from authorities: dissemination of RP culture, matter of dignity

Dose criteria (or restrictions)

- Called Reference Level in Existing ES
 - Not to go or stay above
 - Reduce doses ALARA below
- Typically in the band 1-20 mSv/y projected dose (ICRP 103)
- May be below 1 mSv/y. No recommendation on public vs occupational restrictions
- Selected taking account the characteristics of the ES
 - Nature of exposure
 - Benefit from the ES to individuals and society
 - Practicability of reducing or preventing exposures
 - Pas experience
- Can be changed during optimisation process

RL adopted or proposed for Existing ES

Exposure situations	Occupational exposure	Public exposure
Cosmic radiation	5-10 mSv/y	5-10 mSv/y
Radon	10 mSv/y	I0 mSv/y
NORM	20 mSv/y*	I0 mSv/y* Long term =I mSv/y*
Contaminated sites	Not yet defined	Not yet defined
Contaminated areas	20 mSv/y*	Lower part of I-20 mSv/y* Long term = I mSv/y*

Requisites

- Information on the situation and assessment of exposures are basic requisites in all ES. May be applied differently
- Several requisites in ICRP 103: classification of areas, informed consent, education/training, dose monitoring, recording, health surveillance: mainly set for Planned ES
- Can be used in Existing ES
- Current reflection through dedicated Publications: characterisation of the ES, information, accountability for safety, stakeholders involvement, protection of environment, support of affected individuals, development of RP culture
- Ethical values: right to know, dignity, autonomy
- An existing ES can be managed as a Planned ES for regulatory convenience

Conclusion

- A series of reports developed by Committee 4
 - Radon (ICRP 126)
 - Cosmic radiation in aviation (TG 83)
 - NORM (TG 76)
 - Contaminated sites (TG 98)
 - Living in contaminated areas (TG 93)
- Moving towards recommendations using a coherent and graded approach based on:
 - Assessment of exposures and prevailing circumstances
 - Justification for action
 - Optimisation with restriction
- Some issues still need reflection
 - Protection of environment

